

SQL Indexes Impact on Concurrent Data Access

www.ladiMolnar.com

Introduction ... 2

Why is this interesting? ... 2
Prerequisites .. 2

How to repro the sample cases .. 3
1. Tables with no indexes ... 4

2. Tables with a primary key (clustered index) .. 6
2.1. The WHERE clause uses the primary key column (clustered index) 7

2.2. The WHERE clause uses a column that is not indexed in a table with a primary key

(clustered index) .. 9

2.3. The WHERE clause uses the primary key column (clustered index) and the query changes

the value of the primary key column .. 11
3. Tables with a non clustered index .. 13

3.1. The WHERE clause uses an indexed column in a table that has a non-clustered index 13
3.2. The WHERE clause uses a column that is not indexed in a table that has only one non-

clustered index ... 15

4. Tables with a composite primary key .. 17
4.1. The WHERE clause uses all the columns that form the primary key 17

4.2. The WHERE clause uses the first column from the primary key ... 19

4.3. The WHERE clause uses the first column from the primary key and a non indexed column

with an AND ... 21
4.4. The WHERE clause uses the first column from the primary key and a non indexed column

with an OR ... 24
4.5. The WHERE clause uses the second column from the primary key 26
4.6. The WHERE clause uses the second column of the primary key. That column also has its

own index .. 28
5. Tables with a primary key (clustered index) and a foreign key where the foreign key is not

indexed .. 30
6. Tables with a primary key (clustered index) and a foreign key where the foreign key is indexed

 35
The sample database .. 39

http://www.ladimolnar.com/

Introduction

This document shows how the presence or absence of indexes will impact the outcome of scenarios

where different clients do concurrent access on SQL tables.

Why is this interesting?

Most SQL developers understand how indexes impact the performance of simple queries. The

simplest and most direct consequences of indexes have to do with what happens when one client

issues a query that has a WHERE clause. The presence or absence of the appropriate index can cause

dramatic differences in performance if large table are involved. In one case SQL Server will scan the

entire table. In other it will be able to directly access the rows targeted by the query.

There is also a different aspect of indexes which has to do with how concurrent clients will impact

each other when accessing the same tables. The presence or absence of indexes will change the way

SQL Server parses data from tables. Without indexes not only the operations that a client does will

cause more data to be parsed but that client may be locked and have to wait needlessly until another

client finishes its own operations. By needlessly I mean that the same results would be achieved if no

locking and waiting was imposed. Without indexes, the SQL Server does not have a way of figuring

that that is the case and the approach that is taken will cause one client to wait for another.

Prerequisites

This article assumes that you have at least a basic understanding of a few simple SQL concepts:

 SQL tables, columns.

 Simple queries especially update queries. Meaning you understand a query like

UPDATE Table1 SET Col1 = Col1 + 1 WHERE Id = 100

 Transactions.

 Indexes.

 Locks.

 Foreign keys.

A brief refresher on some of these concepts:

 Indexes
Indexes are a way of collecting and maintaining information about the location of rows in

SQL tables. They help locate rows more quickly and efficiently. SQL Server stores each

index in an n-ary tree data structure. The leaf level of this tree is composed of either the

actual data (as in the case of a clustered index) or of some kind of pointers to the actual data

rows.

SQL Server has two types of indexes:

 Clustered.

If you have a clustered index, the data itself in the table will be sorted and stored

based on the key values of the clustered index. In that case the leaf level in the index

n-ary tree is the data itself.

 Non-clustered.

Non-clustered indexes have a structure that is independent of the data rows. The leaf

level of a non-clustered index n-ary tree contains the non-clustered index key values.

Each entry on that level has pointers to the corresponding actual data rows.

The pointer from an index row in a non-clustered index to a data row is called a row

locator. What this row locator actually is depends on whether the table has or does not

have a clustered index. If there is a clustered index then the row locator is the

clustered index key. If the table has no a clustered index then the row locator is a

pointer to the row (Row ID or RID).

 SQL Locks

Locking happens when a SQL Server process takes ownership of a resource (rows, index keys, index

ranges, pages, tables or the database) prior to performing a particular action like reading or updating.

The SQL programmer does not have to manage this process although it can influence it. Locks are

managed by SQL Server internally. Locks are held on SQL Server resources such as rows, index

keys, index ranges, pages, tables or the database and so on. The locks are used to arbitrate concurrent

use of resources by multiple transactions. For example, if during a transaction you delete a row from a

table, an exclusive (X) lock is held on that row, and no other transaction can read or modify that row

until the lock is released. In this case, the lock will be released at the end of a transaction.

How to repro the sample cases

To set up the sample database copy the script at the end of this document in Microsoft SQL Server

Management Studio (SQL Server 2005) or in Query Analyzer (SQL Server 2000) and execute it.

The repro scenarios will illustrate things using two different clients. To repro a case, open in SQL

Server Management Studio (or Query Analyzer for SQL Server 2000) two separate windows and run

the repro statements mentioned for each client.

All the cases are based on similar tables. All these tables have the same columns and content. They

all have 2000 rows. The columns are:

GroupId int NOT NULL, -- 0 to 199. One group for each 10 rows

ItemId int NOT NULL, -- 0 to 1999

ItemData int NULL -- 0 to 1999

The only difference is in the way primary key, indexes or foreign keys are created. Depending on

those things we will see that for the same queries locks are applied differently. Since locks are

applied differently, concurrent access made by different clients will perform differently.

1. Tables with no indexes

This case is exemplified by table Table1. It is a plain table with no indexes:

CREATE TABLE dbo.Table1 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

Let’s say we have a client that executes the query:

BEGIN TRANSACTION

UPDATE Table1 SET ItemData = ItemData + 1 WHERE ItemId = 0

Even though only one row satisfies the WHERE clause, since we don’t have an index on the column

ItemId, SQL Server needs to parse all the rows in the table in order to evaluate the condition ItemId

= 0. Hence the table scan seen in the execution plan. Each row that is examined is locked with an

update (U) lock. If the row does not satisfy the condition it is unlocked. If the row satisfies the

condition, the update (U) lock is changed in an exclusive (X) lock and the row is updated. The

exclusive lock will remain in effect until the transaction ends. After this statement finishes (but the

transaction is still active) the locks are as shown below:

Note that since we don’t have a clustered index the locks are applied to RIDs (row IDs).

Let’s say that before the first client completes its transaction, a second client executes an update on a

different row:

BEGIN TRANSACTION

UPDATE Table1 SET ItemData = ItemData + 1 WHERE ItemId = 100

The same process will happen where SQL Server has to examine all the rows in the table to see if

they satisfy the condition in the WHERE clause which is ItemId = 100. Each row that is examined is

locked with an update (U) lock. If the row does not satisfy the condition it is unlocked. If the row

satisfies the condition, the update (U) lock is changed in an exclusive (X) lock and the row is

updated. When SQL Server tries to examine the row with ItemId = 0, it finds it already exclusively

locked by the first client. It has to wait and it does that until the first client will complete its

transaction (or a timeout is raised). The locks at this moment are as shown here:

Note the Status (or Request Status) = WAIT for one of the locks applied by the second client. That is

the lock that will force the second client to wait until the first client completes its transaction.

2. Tables with a primary key (clustered index)

This case is exemplified by table Table2. It is similar with Table1 with the difference that it has a

clustered index:

CREATE TABLE dbo.Table2 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table2 ADD CONSTRAINT

PK_Table2 PRIMARY KEY CLUSTERED (ItemId)

GO

2.1. The WHERE clause uses the primary key column
(clustered index)

The first client executes:

BEGIN TRANSACTION

UPDATE Table2 SET ItemData = ItemData + 1 WHERE ItemId = 0

In this case SQL Server knows how to pinpoint the appropriate row based on the index. We no

longer have a table scan. Since the access is done in a direct manner, the two clients will not lock

each other out as long as they access different rows. Note also that the locks are applied on the key

of the clustered index.

The second client executes:

BEGIN TRANSACTION

UPDATE Table2 SET ItemData = ItemData + 1 WHERE ItemId = 100

SQL Server can pinpoint the row that satisfies the condition ItemId = 100 based on the index. It will

no longer have to do the table scan that we saw at point 1. As shown here the second client is not

blocked.

Note the fact that both clients have all their locks granted.

The second client will however be blocked if it tries to access the same row as the first client:

BEGIN TRANSACTION

UPDATE Table2 SET ItemData = ItemData + 1 WHERE ItemId = 0

Note the Request Status = WAIT for one of the locks of the second client.

2.2. The WHERE clause uses a column that is not indexed in a
table with a primary key (clustered index)

The first client executes:

BEGIN TRANSACTION

UPDATE Table2 SET ItemData = ItemData + 1 WHERE ItemData = 0

Even though we have an index, that index is useless when evaluating the WHERE clause. As a result

SQL Server will have to parse and evaluate all the rows in the table. This scenario is similar with the

one at point 1. There is a difference though. The locks are taken on the keys of the clustered index

and not on RIDs.

If the second client executes:

BEGIN TRANSACTION

UPDATE Table2 SET ItemData = ItemData + 1 WHERE ItemData = 100

Even though we have a clustered index, because that index is of no use for this particular WHERE

clause, SQL Server still has to examine all the rows to evaluate the WHERE clause. The same

mechanism as shown in case 1. applies. When the second client wants to examine the row with

ItemId = 0 to evaluate the condition ItemData = 100, it finds that the row is locked. Since the second

client needs to apply a update (U) lock to examine the row, it will have to wait for the exclusive (X)

lock already placed by the first client to be lifted. That will only happen when the first client will

complete its transaction.

Note the Request Status = WAIT for one of the locks of the second client.

2.3. The WHERE clause uses the primary key column
(clustered index) and the query changes the value
of the primary key column

The first client executes:

BEGIN TRANSACTION

UPDATE Table2 SET ItemId = 2000 WHERE ItemId = 0

Note that we have two keys locked. One key corresponds to ItemId = 0. The second key corresponds

to ItemId = 2000

If the second client executes:

BEGIN TRANSACTION

UPDATE Table2 SET ItemData = ItemData + 1 WHERE ItemId = 2000

Then the second client is blocked:

Note the Request Status = WAIT for one of the locks of the second client.

3. Tables with a non clustered index

This case is exemplified by table Table3. It is a table with a non clustered index:

CREATE TABLE dbo.Table3 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

CREATE INDEX IX_Table3_ItemId ON dbo.Table3 (ItemId)

GO

3.1. The WHERE clause uses an indexed column in a table
that has a non-clustered index

This scenario is similar to the one at point 2.1. The difference is that locks will now be placed on

RIDs and not on index keys. The first client executes:

BEGIN TRANSACTION

UPDATE Table3 SET ItemData = ItemData + 1 WHERE ItemId = 0

In this case SQL Server knows where the row that satisfies the WHERE clause is based on the index.

There is no need for examining all the rows. However, note that since we don’t have a clustered

index the locks are placed on row IDs (RID) and not on index keys (as it happened in case 2.1.).

The second client executes:

BEGIN TRANSACTION

UPDATE Table3 SET ItemData = ItemData + 1 WHERE ItemId = 100

Note that all the locks are granted.

3.2. The WHERE clause uses a column that is not indexed in a
table that has only one non-clustered index

This scenario is similar to the one at point 2.2. The difference is that locks will now be placed on

RIDs and not on index keys. The first client executes:

BEGIN TRANSACTION

UPDATE Table3 SET ItemData = ItemData + 1 WHERE ItemData = 0

The second client executes:

BEGIN TRANSACTION

UPDATE Table3 SET ItemData = ItemData + 1 WHERE ItemData = 100

The second client is blocked:

Note the Request Status = WAIT for one of the locks of the second client.

4. Tables with a composite primary key

This case is exemplified by table Table4. It is a table with a composite clustered index:

CREATE TABLE dbo.Table4 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table4 ADD CONSTRAINT

PK_Table4 PRIMARY KEY CLUSTERED (GroupId, ItemId)

GO

4.1. The WHERE clause uses all the columns that form the
primary key

This is quite similar with the case at point 2.1. The first client executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1

WHERE GroupId = 0 AND ItemId = 0

If the second client executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1

WHERE GroupId = 0 AND ItemId = 1

The second client is not blocked:

Note that all the locks are granted.

4.2. The WHERE clause uses the first column from the primary
key

The first client executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1 WHERE GroupId = 0

The second client executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1 WHERE GroupId = 1

The second client is not blocked. Note however that locks are placed individually on key values for

each of the 20 rows that are updated by the two clients:

4.3. The WHERE clause uses the first column from the primary
key and a non indexed column with an AND

The first client executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1

WHERE GroupId = 0 AND ItemData = 0

The second client accesses a different row in a different group. It executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1

WHERE GroupId = 1 AND ItemData = 10

For each client there is only one row that satisfies the WHERE clause. However, SQL Server will

have to access and examine more rows than that one row. Since the combination (GroupId,

IndexData) is not indexed, SQL Server cannot pinpoint the rows that satisfy the WHERE clause

based on an index. Nevertheless it does not have to examine all the rows in the table. It can still take

advantage of the condition placed on the GroupId. The first client examines all 10 rows that have

GroupId = 0. The second client examines all 10 rows that have GroupId = 1. All in all, the two

clients will manage to avoid stepping on each other toes and the result is that the second client is not

blocked:

Note that all the locks are granted.

The story changes if the second client accesses a different row in the same group as the first client:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1

WHERE GroupId = 0 AND ItemData = 5

This time the second client is blocked although the row it tries to modify is different from the row

modified by the first client. This is because GroupId that participates in the primary key cannot

discriminate between the two rows. Both these rows have GroupId = 0.When the second client issues

its query, SQL Server will have to examine all the 10 rows in the group that has GroupId = 0. For

each row that is examined, SQL Server will start by placing an update (U) lock for the period it reads

the row. When it tries to examine (and place the U lock) the row that has ItemId = 0 it finds it

already exclusively locked. The second client will be blocked until the first client finishes its

transaction:

Note the Request Status = WAIT for one of the locks of the second client.

4.4. The WHERE clause uses the first column from the primary
key and a non indexed column with an OR

The first client executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1

WHERE GroupId = 0 OR ItemData = 10

If the second client executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1

WHERE GroupId = 2 OR ItemData = 100

The second client accesses different rows compared with the ones accessed by the first client.

However for this particular WHERE clause the index we have is useless and the SQL Server will

have to examine all the rows in the table. For each row that is examined, SQL Server will try to

place an update (U) lock just to evaluate the WHERE clause. When SQL Server reaches a row that

was already exclusively locked by the first client it will have to wait until the first client completes

the transaction. Hence the second client is blocked:

Note the Request Status = WAIT for one of the locks of the second client.

4.5. The WHERE clause uses the second column from the
primary key

Using the second column in a composite index will not allow SQL Server to take advantage of the

index. The two clients will end up stepping on each other toes.

The first client executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1 WHERE ItemId = 0

The second client executes:

BEGIN TRANSACTION

UPDATE Table4 SET ItemData = ItemData + 1 WHERE ItemId = 1

Again, this is similar with having in the WHERE clause a column that does not participate at all in

the index. Since ItemId is the second column of a composite index it is useless for this WHERE

clause. SQL Server has to loop through all rows to identify the rows that satisfy the condition ItemId

= 1.

The second client is blocked:

Note the Request Status = WAIT for one of the locks of the second client.

4.6. The WHERE clause uses the second column of the primary
key. That column also has its own index

This case is exemplified by table Table4b. It is a table with a composite clustered index and a

separate non clustered index:

CREATE TABLE dbo.Table4b (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table4b ADD CONSTRAINT PK_Table4b PRIMARY KEY

CLUSTERED (GroupId, ItemId)

GO

CREATE INDEX IX_Table4b_ItemId ON dbo.Table4b (ItemId)

GO

This case is similar with case 4.5. However, to improve the query performance we added a separate

index on the second column (ItemId) of the primary key.

The first client executes:

BEGIN TRANSACTION

UPDATE Table4b SET ItemData = ItemData + 1 WHERE ItemId = 0

The second client executes:

BEGIN TRANSACTION

UPDATE Table4b SET ItemData = ItemData + 1 WHERE ItemId = 1

The second client is not blocked:

Note that all the locks are granted.

5. Tables with a primary key (clustered index) and a foreign
key where the foreign key is not indexed

This case is exemplified by the tables Group5 and Table5. Both tables have primary keys on the

columns we’ll use in the WHERE clause. We also have a FK from Table5 to Gropu6. However we

did not indexed column GroupId in table Table5.

CREATE TABLE dbo.Group5 (

 GroupId int NOT NULL,

 GroupName nvarchar(10) NULL

)

GO

ALTER TABLE dbo.Group5 ADD CONSTRAINT PK_Group5 PRIMARY KEY CLUSTERED

(GroupId)

GO

CREATE TABLE dbo.Table5 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table5 ADD CONSTRAINT PK_Table5 PRIMARY KEY CLUSTERED

(ItemId)

GO

ALTER TABLE dbo.Table5 ADD CONSTRAINT FK_Table5_GroupId FOREIGN KEY

(GroupId) REFERENCES dbo.Group5 (GroupId)

GO

The fact that Table5.GroupId is not indexed can have negative effects regarding concurrency. That

happens even though we do not have any WHER condition that directly involves Table5.GroupId.

The first client deletes the rows from table Table5 with ItemId in the range [0, 10). These rows

correspond to group GroupId = 0. Next, the first client deletes the entry from the Group5 table that

has GroupId = 0. It executes:

BEGIN TRANSACTION

DELETE Table5 WHERE ItemId >= 0 AND ItemId < 10

DELETE Group5 WHERE GroupId = 0

The second client deletes the rows from table Table5 with ItemId in the range [10, 20). These rows

correspond to group GroupId = 1. Next, the second client deletes the entry from the Group5 table

that has GroupId = 1. It executes:

BEGIN TRANSACTION

DELETE Table5 WHERE ItemId >= 10 AND ItemId < 20

DELETE Group5 WHERE GroupId = 1

What is interesting is that the two clients operate on different rows and use in their WHERE clauses

conditions that are fully covered by indexes. And yet the second client ends up being blocked. To

understand why we need to look at the execution plan of the query that deletes from Group5.

When an entry is deleted from the Group5 table, SQL Server needs to make sure that no foreign key

constraint is violated. That would be the case when Table5 still had entries with GroupId = 1. For

this, entries in Table5 must be examined. Since GroupId column in table Table5 does not have an

index, SQL Server will scan all the rows in that table. This is shown in the execution plan by the

Index Scan on the Table5. When SQL Server reads a row in Table5 it will start by putting a shared

(S) lock. This shared lock is lifted as soon as the row was examined. However, the lock cannot be

obtained on rows that are already exclusively locked by client 1. Hence when such a row is scanned,

client 2 has to wait until the first client completes its transaction.

Note the Request Status = WAIT for one of the locks of the second client.

6. Tables with a primary key (clustered index) and a foreign
key where the foreign key is indexed

This case is exemplified by the tables Group6 and Table6. It is similar with case 5. However, here

the foreign key GroupId in Table6 is indexed and the scenario does not result in the second client

being blocked.

CREATE TABLE dbo.Group6 (

 GroupId int NOT NULL,

 GroupName nvarchar(10) NULL

)

GO

ALTER TABLE dbo.Group6 ADD CONSTRAINT PK_Group6 PRIMARY KEY CLUSTERED

(GroupId)

GO

CREATE TABLE dbo.Table6 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table6 ADD CONSTRAINT PK_Table6 PRIMARY KEY CLUSTERED

(ItemId)

GO

CREATE INDEX IX_Table6_GroupId ON dbo.Table6 (GroupId)

GO

ALTER TABLE dbo.Table6 ADD CONSTRAINT FK_Table6_GroupId FOREIGN KEY

(GroupId) REFERENCES dbo.Group6(GroupId)

GO

We’ll execute the same steps as for case 5.

The first client deletes the rows from table Table5 with ItemId in the range [0, 10). These rows

correspond to group GroupId = 0. Next, the first client deletes the entry from the Group5 table that

has GroupId = 0. It executes:

BEGIN TRANSACTION

DELETE Table6 WHERE ItemId >= 0 AND ItemId < 10

DELETE Group6 WHERE GroupId = 0

One interesting thing is that we have a lot more exclusive locks that in case 5. This is because we

have 10 more locks applied on the index on column GroupId of table Table6.

The second client deletes the rows from table Table5 with ItemId in the range [10, 20). These rows

correspond to group GroupId = 1. Next, the first client deletes the entry from the Group5 table that

has GroupId = 1. It executes:

BEGIN TRANSACTION

DELETE Table6 WHERE ItemId >= 10 AND ItemId < 20

DELETE Group6 WHERE GroupId = 1

This time the second client is not blocked.

Here is the execution plan of the query that deletes from Group6. Note that we have an index seek

(not a index scan) where the table Table6 is examined to ensure the foreign key is not violated.

For brevity we’ll show here only the locks taken by the second client. The ones taken by the first

client are shown a few paragraphs above and remain the same.

Note that all locks are granted.

The sample database

USE tempdb

GO

IF EXISTS (SELECT * FROM master.dbo.sysdatabases WHERE Name = 'Test')

BEGIN

 DROP DATABASE Test

END

GO

CREATE DATABASE Test

GO

USE Test

CREATE TABLE dbo.Table1 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

CREATE TABLE dbo.Table2 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table2 ADD CONSTRAINT

PK_Table2 PRIMARY KEY CLUSTERED (ItemId)

GO

CREATE TABLE dbo.Table3 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

CREATE INDEX IX_Table3_ItemId ON dbo.Table3 (ItemId)

GO

CREATE TABLE dbo.Table4 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table4 ADD CONSTRAINT

PK_Table4 PRIMARY KEY CLUSTERED (GroupId, ItemId)

GO

CREATE TABLE dbo.Table4b (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table4b ADD CONSTRAINT PK_Table4b PRIMARY KEY CLUSTERED

(GroupId, ItemId)

GO

CREATE INDEX IX_Table4b_ItemId ON dbo.Table4b (ItemId)

GO

CREATE TABLE dbo.Group5 (

 GroupId int NOT NULL,

 GroupName nvarchar(10) NULL

)

GO

ALTER TABLE dbo.Group5 ADD CONSTRAINT PK_Group5 PRIMARY KEY CLUSTERED

(GroupId)

GO

CREATE TABLE dbo.Table5 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table5 ADD CONSTRAINT PK_Table5 PRIMARY KEY CLUSTERED

(ItemId)

GO

ALTER TABLE dbo.Table5 ADD CONSTRAINT FK_Table5_GroupId FOREIGN KEY

(GroupId) REFERENCES dbo.Group5 (GroupId)

GO

CREATE TABLE dbo.Group6 (

 GroupId int NOT NULL,

 GroupName nvarchar(10) NULL

)

GO

ALTER TABLE dbo.Group6 ADD CONSTRAINT PK_Group6 PRIMARY KEY CLUSTERED

(GroupId)

GO

CREATE TABLE dbo.Table6 (

 GroupId int NOT NULL,

 ItemId int NOT NULL,

 ItemData int NULL

)

GO

ALTER TABLE dbo.Table6 ADD CONSTRAINT PK_Table6 PRIMARY KEY CLUSTERED

(ItemId)

GO

CREATE INDEX IX_Table6_GroupId ON dbo.Table6 (GroupId)

GO

ALTER TABLE dbo.Table6 ADD CONSTRAINT FK_Table6_GroupId FOREIGN KEY

(GroupId) REFERENCES dbo.Group6(GroupId)

GO

DECLARE @CrtIndex int

DECLARE @GroupId int

SET @GroupId = 0

WHILE @GroupId < 200

BEGIN

 INSERT INTO Group5 (GroupId, GroupName)

 VALUES (@GroupId, 'Group ' + CAST(@GroupId AS nvarchar(3)))

 INSERT INTO Group6 (GroupId, GroupName)

 VALUES (@GroupId, 'Group ' + CAST(@GroupId AS nvarchar(3)))

 SET @GroupId = @GroupId + 1

END

SET @CrtIndex = 0

WHILE @CrtIndex < 2000

BEGIN

 SET @GroupId = @CrtIndex / 10

 INSERT INTO Table1 (GroupId, ItemId, ItemData)

 VALUES (@GroupId, @CrtIndex, @CrtIndex)

 INSERT INTO Table2 (GroupId, ItemId, ItemData)

 VALUES (@GroupId, @CrtIndex, @CrtIndex)

 INSERT INTO Table3 (GroupId, ItemId, ItemData)

 VALUES (@GroupId, @CrtIndex, @CrtIndex)

 INSERT INTO Table4 (GroupId, ItemId, ItemData)

 VALUES (@GroupId, @CrtIndex, @CrtIndex)

 INSERT INTO Table4b (GroupId, ItemId, ItemData)

 VALUES (@GroupId, @CrtIndex, @CrtIndex)

 INSERT INTO Table5 (GroupId, ItemId, ItemData)

 VALUES (@GroupId, @CrtIndex, @CrtIndex)

 INSERT INTO Table6 (GroupId, ItemId, ItemData)

 VALUES (@GroupId, @CrtIndex, @CrtIndex)

 SET @CrtIndex = @CrtIndex +1

END

GO

USE tempdb

GO

